Charm and Beauty Physics at Fermilab

Robert K. Kutschke Fermilab

International Conference on Flavor Physics

Zhang-Jia-Jie, Hunan, P.R. China

- 1. Introduction
- 2. $D^0 \leftrightarrow D^0$ Mixing and DCSD
- 3. Some Dalitz plots.
- 4. A few lifetimes.
- 5. $\Xi_c^+ \rightarrow pK^-\pi^+$
- 6. P-wave charm.
- 7. B Physics at the Tevatron.

June 4, 2001

http://home.fnal.gov/~kutschke/talks/Misc/icfp01.pdf

Charm Experiments: Fixed Target

- •E791 1990/91
 - •500 GeV/c π^-
 - Target: Pt, C.
 - •Follows: E516,E691,E769
- •SELEX (E781) ran 1996/97
 - •600 GeV/c π^- , Σ^-
 - •540 GeV/c p, π^+
 - •Targets: C, Cu.
 - Goal: charmed baryons

- •FOCUS (E831) 1996/97
 - •300 GeV/c (max) γ
 - Target: BeO.
 - Upgraded E687.
- •Will not include:
 - •Charmonium: Fixed target, Tevatron, anti-p accumulator ring: E835.
 - Production physics.

E-791 Spectrometer

Properties of Fixed Target Exp'ts.

- Segmented Targets
- Si μ-strip detectors
- Downstream magnets and tracking systems:
 - Momentum measurement
 - •Vee's
- Cerenkov based PID
 - •SELEX: RICH
 - •FOCUS,791: Threshold

- EM Calorimetry:
 - FOCUS, SELEX: Pb Glass
 - E791: Pb liquid scint.
- Hadronic calorimetery.
- Muon chambers:
 - •FOCUS, E791 only.
- High bandwidth trigger/daq.
 - 791: Very open trigger.
 - Others more selective.

Vertexing is the Key

Golden Modes:

$$D^+ o K^- \, \pi^+ \, \pi^+$$

$$D^0 o K^- \pi^+$$

$$\mathsf{D}^0 o \mathsf{K}^{\scriptscriptstyle{-}} \, \pi^{\scriptscriptstyle{+}} \, \pi^{\scriptscriptstyle{+}} \, \pi^{\scriptscriptstyle{-}}$$

SM Expectations for D⁰ Mixing

- Short distance effects from suppressed:
 - GIM mechanism

 K^+, p^+

 Long distance effects from common intermediate states.

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0 \\ \overline{D}^0 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} D^0 \\ \overline{D}^0 \end{pmatrix}$$

If CP is Conserved

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0 \\ \overline{D}^0 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} D^0 \\ \overline{D}^0 \end{pmatrix}$$

Diagonalize this:

$$D_{1}^{0} = \frac{1}{\sqrt{2}} \left(D^{0} + \overline{D}^{0} \right) \qquad D_{2}^{0} = \frac{1}{\sqrt{2}} \left(D^{0} - \overline{D}^{0} \right)$$

These have definite mass and lifetime: M_1 , M_2 , Γ_1 , Γ_2 .

Define:

$$\Delta m = M_1 - M_2 \qquad \Gamma = \frac{(\Gamma_1 + \Gamma_2)}{2} \qquad \Delta \Gamma = \Gamma_2 - \Gamma_1$$

$$x = \frac{\Delta m}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_2 - \Gamma_1}{\Gamma_1 + \Gamma_2}$$

Exp't: x < 0.03

Exp't: -0.06 < y < 0.01

Cartoon of Δm and $\Delta \Gamma$

Time Evolution

• D⁰
$$\rightarrow$$
 CP+ (eg K+K-) $\frac{dN}{dt} = \Gamma_1 \exp(-\Gamma_1 t)$
• D⁰ \rightarrow CP - $\frac{dN}{dt} = \Gamma_2 \exp(-\Gamma_2 t)$

• D⁰ \rightarrow non-CP eigenstate (eg. K⁻ π ⁺, K⁻ μ ⁺ ν_{μ})

$$\frac{dN}{dt} = \frac{1}{2} \left(\Gamma_1 \exp(-\Gamma_1 t) + \Gamma_2 \exp(-\Gamma_2 t) \right)$$

$$= \Gamma \exp(-\Gamma t) \left[\cosh(y \Gamma t) - y \sinh(y \Gamma t) \right]$$

$$= \Gamma \exp(-\Gamma t) \left[1 + O(y^2) \right]$$

Method 1: Compare lifetimes measured in K^+K^- and $K^-\pi^+$. This measures y.

$D^0 \rightarrow K^- \mu^+ \nu_\mu Mixing$

- Tag initial flavor using $D^{*+} \rightarrow D^{0}\pi^{+}$.
- Look for "wrong sign" decays:
- SM expectation (expansion for small x and y):

$$r_{mix}(t) = \frac{1}{4} \Gamma^2 t^2 \exp(-\Gamma t)(x^2 + y^2)$$

• # of oscillations/mean lifetime = $x/2\pi$.

Method 2: Measure time dependence of wrong sign Kμν.

$D^0 \rightarrow K^+\pi^-$: DCSD and Mixing

- DCSD: Doubly Cabbibo Suppressed Decay
- Wrong sign hadronic modes: both mixing and DCSD.

$$r_{WS}(t) = \frac{\Gamma(D^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle +} \boldsymbol{p}^{\scriptscriptstyle -})}{\Gamma(D^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle -} \boldsymbol{p}^{\scriptscriptstyle +})}$$

- SM prediction: $r_{WS}(t) = \left[r_{DCS} + \sqrt{r_{DCS}} y't + \frac{(x'^2 + y'^2)}{4} t^2 \right]$
- •t in units of mean lifetime; δ =relative phase between dcsd and mixing amplitudes.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \mathbf{d} & \sin \mathbf{d} \\ -\sin \mathbf{d} & \cos \mathbf{d} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \qquad r_{DCS} = \frac{\Gamma_{DCSD} (D^0 \to K^+ \mathbf{p}^-)}{\Gamma(D^0 \to K^- \mathbf{p}^+)}$$

Method 3: Measure time dependence of wrong sign K⁺ π^- :

Charm Mixing: Theory Predictions

From compilation of H.N.Nelson hep-ex/9908021

Triangles are SM x Squares are SM y

Circles are NSM x

Predictions encompass **15** orders magnitude for R_{mix} (but only 7 orders of x or y!)

FOCUS y_{CP} Measurement Phys. Lett. B485:62

- Assumes CP invariance.
- y_{CP}=y if nature conserves CP
- $\bullet D^0 \rightarrow K^-K^+: CP^+$
- •D⁰ \rightarrow K⁻ π^+ : 0.5 (CP⁺ + CP⁻)
- Signal and sideband regions shown.
- Strong clean up and PID cuts.
- •Slice into time bins, subtract BG and efficiency correct.
- Deal with reflections.

Acceptance Corrections: f(t')

- $t'=(t-n\sigma)$, where n is the detachment cut.
- f(t') is very flat and is essentially same for K^-K^+ and $K^-\pi^+$.
- Derived from MC: fiducial volume, absorbtion.
- $\sigma(t') \cong 30$ fs: no need to convolute resolution.

FOCUS y_{CP} Measurement

- Binned Max. Likelihood Fit
- •Non-parametric treatment of the backgrounds.

$$y_{CP} = \frac{\Delta\Gamma}{2\Gamma} = \frac{\boldsymbol{t}(K^{-}\boldsymbol{p}^{+})}{\boldsymbol{t}(K^{-}K^{+})} - 1$$

$$y_{CP} = (3.42 \pm 1.39 \pm 0.74)\%$$

- Points: background subtracted, f(t') corrected yields
- Lines: Fit results.
- $\tau(D^0) = 409.2 \pm 1.3$ (stat only); cuts optimized for y, not τ .

E791 y_{CP} Measurement

PRL. 83 (1999) p.32

$$2(\Gamma_{KK} - \Gamma_{K\pi}) =$$
 $0.04 \pm 0.14 \pm 0.05 \text{ ps}^{-1}$

$$y_{CP} = (0.8 \pm 2.9 \pm 1.0)\%$$

Comparison of y Results

Experiment	y _{CP} (%)	Lifetime D ⁰ g Kp (fs)
E791	$0.8 \pm 2.9 \pm 1.0$	413 ± 3 ± 4
FOCUS	3.42 ±1.39 ± 0.74	409.2 ± 1.3 (Stat. Only)
BELLE (Preliminary)	1.16 + 1.67 -1.65	414.5 ± 1.7 (Stat. Only)
CLEO (Preliminary)	$-1.1 \pm 2.5 \pm 1.4$	404.6 ± 3.6 (Stat. Only)
SELEX		407.9 ± 6.0 ± 4.3
World Average	1.77 ± 1.00	412.6 ± 2.8 (PDG 2K)

FOCUS: Wrong Sign $D^0 \rightarrow K^+\pi^-$

•Tight particle ID + extra hard cuts if $M(K\pi) \cong M(\pi K)$.

FOCUS R_{WS} Measurement

• Points: Fitted D⁰ yield from previous page.

FOCUS: $R_{ws} = (0.404 \pm 0.085 \pm 0.025)\%$

CLEO:
$$R_{ws} = (0.332^{+0.063}_{-0.065} \pm 0.040)\%$$

Interpretation of R_{WS} Measurement

$$r_{WS}(t) = \left[r_{DCS} + \sqrt{r_{DCS}} y'(t/t) + \frac{(x'^2 + y'^2)}{4} (t/t)^2 \right]$$

- Time integrated R_{WS} depends on detachment cuts!
 - Depends on t, not t.'
- Not a good observable: may vary between experiments!

$$R_{WS} = r_{DCS} + \sqrt{r_{DCS}} y' \langle t/t \rangle + \frac{(x'^2 + y'^2)}{4} \langle (t/t)^2 \rangle$$

- <> is average over true distribution of times.
- We believe x is small from semi-leptonic decays.
- Determine $\langle t/\tau \rangle$ and $\langle (t/\tau)^2 \rangle$ using MC
- Measure R_{WS} : 3 unknowns r_{DCS} , x', y'.

Interpretation of R_{WS} Measurement

$$R_{WS} = r_{DCS} + \sqrt{r_{DCS}} y' \langle t/t \rangle + \frac{(x'^2 + y'^2)}{4} \langle (t/t)^2 \rangle$$

•Using measured R_{WS} , for small x, solve for the allowed region in the r_{DCS} - y' plane.

Comparison of Mixing Results

- No compelling signal.
- If δ is small, FOCUS y_{CP} can be compared directly to CLEO y'.
 - •Both consistent with zero but they have opposite sign!
 - •If opposite sign, implies large δ .
- •Other measurements:
 - •E791: $y_{CP} = (0.8 \pm 2.9 \pm 1.0)\%$
 - •BELLE(prelim): $y_{CP} = 1.0^{+3.8}_{-3.5} =$
 - •E791 Klv: PRL 77:2384,1996.
 - •CLEO: PRL 84:5038, 2000.

E791: D⁺ $\rightarrow \pi^-\pi^+\pi^+$ Dalitz Plot

E791: Unbinned Max Likelihood Fit

Need a light isoscalar to fit the data: σ

	Fit 1	Fit 2
σπ+	-	46.3 ± 9.0 ± 2.1
	-	205.7 ± 8.0 ± 5.2
$\rho\pi^+$	20.8 ± 2.4	33.6 ± 3.2 ± 2.2
	0. (fixed)	0. (fixed)
NR	38.6 ± 9.7	$7.8 \pm 6.0 \pm 2.7$
	150.1 ± 11.5	$57.3 \pm 19.5 \pm 5.7$
$f_0(980)\pi^+$	7.4 ± 1.4	$6.2 \pm 1.3 \pm 0.4$
	151.8 ± 16.0	$165.0 \pm 10.9 \pm 3.4$
$f_2(1270) \pi^+$	6.3 ± 1.9	$19.4 \pm 2.5 \pm 0.4$
	102.6 ± 16.0	$57.3 \pm 7.5 \pm 2.9$
$f_0(1370) \pi^+$	10.7 ± 3.1	$2.3 \pm 1.5 \pm 0.8$
	143.2 ± 9.7	$105.4 \pm 17.8 \pm 0.6$
$\rho^0 (1450)\pi^+$	22.6 ± 3.7	$0.7 \pm 0.7 \pm 0.3$
	45.8 ± 14.9	319.1 ± 39.0 ± 10.9

Fit Fraction
Phase (degrees)

 $M(\sigma) = 478\pm24\pm17$

 $\Gamma(\sigma) = 324 \pm 42 \pm 21$

both in MeV/c²

Can other groups see it?

Is it in other channels?

E791: $D_s^+ \to \pi^-\pi^+\pi^+$ Dalitz plot

Phys. Rev. Lett. 86 (2001) p. 765.

- •Other resonances present: $\rho^0(770)$, $\rho^0(1450)$, $f_2(1270)$.
- •Mass and width measurements for the f(980) and f(1370).

SELEX: Λ_c and D⁰ Lifetimes

Binned lifetime analysis OK since $\sigma(t_R) << \tau$.

SELEX: Λ_c and D⁰ Lifetimes

- •Reduced Proper time: $t_R = [L-L_{MIN}] M/pc$
- •Simultaneous Max Likelihood fit to the binned signal and sideband t_R distributions.
 - •BG sub, ε corrected data.
 - Background
 - Acceptance function.

$$\tau(\Lambda_c) = 198.1 \pm 7.0 \pm 5.6 \text{ fs}$$

$$\tau(D^0) = 407.9 \pm 6.0 \pm 4.3 \text{ fs}$$

Observation of $\Xi_c^+ \rightarrow pK^-\pi^+$

$$0.234 \pm 0.047 \pm 0.022$$

$$= \frac{B(\Xi_c^+ \to pK^- \mathbf{p}^+)}{B(\Xi_c^+ \to \Xi^- \mathbf{p}^+ \mathbf{p}^+)} = 0.20 \pm 0.04 \pm 0.02$$

Additional Results: $\Xi_c^+ \rightarrow pK^-\pi^+$

FOCUS:

$$\frac{B(\Xi_c^+ \to p\overline{K}^*(892)^0)}{B(\Xi_c^+ \to pK^- p^+)} = 0.54 \pm 0.09 \pm 0.05$$

SELEX:

$$\frac{B(\Xi_c^+ \to pK^- \mathbf{p}^+)}{B(\Xi_c^+ \to \Sigma^+ K^- \mathbf{p}^+)} = 0.22 \pm 0.06 \pm 0.03$$

Observation of the D_{s2}* at Focus

 D_{s2}^{*} has L=1 between quarks.

There are some real K_S⁰ in the sideband sample.

Simultaneous Fits to D⁰K⁺ and D⁺K_S⁰ Spectra

First observation of D+K_S⁰ mode

Terms in the fit:

- 1. D_{S2} Signal: D-wave Rel. BW
- 2. Smooth background shape
- 3. MC D_{S1} feeddown shape
- 4. MC D_{S2} feeddown shape. Significance is not stable with cut variations!
- Simultaneous: M and Γ same.
- Errors are statistical only

PDG:

$$M = 2573.5 \pm 1.7 \text{ MeV/c}^2$$

$$\Gamma = 15 \pm 5 \text{ MeV/c}^2$$

Observation of the D_{S1} at FOCUS

Terms in the fit:

- D_{S1} Signal: Non Rel BW, convoluted with a gaussian.
- 2. Smooth background shape
- 3. D_{S2}* Signal: D-wave Rel BW.
- Errors are statistical only

PDG:

$$\Delta = 525.35 \pm 0.34 \text{ MeV/c}^2$$

$$\Gamma$$
 < 2.3 MeV/c² @ 90 % CL.

Charm Summary

- E791 still going strong 10 years after data taking.
 - Weak decays, production, strong interaction physics in Dalitz plots, rare decay physics.
- FOCUS and SELEX are now starting to publish.
 - Expect lots more to come: lifetimes, Dalitz plots, charm spectroscopy, mixing and DCSD, rare decays, production ...
- One recent highlight is the new level of precision available for measurements of mixing and DCSD.
 - If it's real, it's interesting.

B Physics at CDF in Run I

- • $\sin 2\beta = 0.79^{+0.41}_{-0.44}$.
- •First fully reconstructed B_s.
- •Measurements of mixing in B_d sector.
- •Limits on mixing in the B_s sector:
- •Amplitude analysis of $B^0 \to J/\psi \ K^{*0}$ and $B_s \to J/\psi \ \phi$.
- •Lifetimes: B^+ , B^0 , B_s , Λ_b .
- •First observation of B_c.
- Production cross-section and differential cross-sections.

B Physics at CDF in Run I ...

- Limits on rare decays.
- Onia production.
- b quark fragmentation functions.
- J/ ψ and χ_c , both prompt and from B's.

B Physics at D0 in Run I

- Limits on rare decays.
- Production cross-section and differential cross-sections.
- J/ψ , both prompt and from B's.

B Physics at the Tevatron: Run II...

- Commissioning runs started in March 2001.
 - Goal: start real data taking Sept. 2001.
 - Will run until significant lumi at LHC (15 fb⁻¹?).
- Huge luminosity upgrade
 - Run I: ≈100. pb⁻¹ best year
 - Run II: 2000. pb⁻¹/year (design lumi)
- Upgraded detectors CDF and D0:
- Main physics goals: Higgs, SUSY, Precision top, etc.
 - These require excellent b tagging.
 - B physics is an important part of these programs
- New dedicated B detector ≈2006: BTeV
- Workshop: http://www-theory.fnal.gov/people/ligeti/Brun2/

CDF Run II Upgrades

R. K. Kutschke, Fermilab

ICFP2001, June 4, 2001.

Some Comparisons

- •Compare to e⁺e⁻ B-factories:
 - •+ About 4 orders of magnitude more rate.
 - •+ Access to B_s, B_c, and b baryons.
 - - Poorer S/B; at e⁺e⁻ initial state well understood.
- •BTeV vs CDF and D0:
 - •+ BTeV is a dedicated b experiment.
 - •+ Much better $K/\pi/p$ particle ID.
 - •± More aggressive trigger.
 - CDF and D0 are running now.

Sensitivity to B_s Mixing

- CDF has sensitivity out to ≈60 for 2 fb⁻¹.
- D0 has sensitivity out to ≈30, for 2 fb⁻¹.

This will be one of the first important b physics measurements of Run II.

 $\sigma(x_s) \approx 0.2$ for all interesting values of x_s .

Other Projections for 2 fb⁻¹

- •CDF: Errors on B^- , B^0 , B_s and Λ_b lifetimes will decrease 5x.
- B_s lifetime difference

•CDF:
$$B_s \rightarrow J/\psi \phi$$
 and $D_s^{(*)+}D_s^{(*)-}$

$$\mathbf{s} \left(\frac{\Delta \Gamma_s}{\Gamma_s} \right) = 0.04$$

•BTeV: $B_s \rightarrow J/\psi \eta^{(\prime)}$, $J/\psi \pi$,

$$\mathbf{S} \left(\frac{\Delta \Gamma_s}{\Gamma_s} \right) = 0.02$$

- $\sigma(\sin 2\beta) = \pm 0.05 \text{ (CDF,D0)}$ $\sigma(\sin 2\beta) = \pm 0.025 \text{ (BTeV)}$
 - •BaBar now = ± 0.2 stat
 - •Projects to ±0.04 stat for 500 fb⁻¹ at PEP II.
- $B_s \rightarrow D_s K$
 - •CDF: $\sigma(\sin(\gamma+\delta))=0.4-0.7$ (± 0.1 by end of Run II)
 - •BTeV: $\sigma(\gamma) = \pm 7^{\circ}$

Other Projections for 2 fb⁻¹

- $B^0 \rightarrow \pi^+\pi^-\pi^0$ $(\rho\pi)$
 - •BTeV: O(1000) diluted flavor tagged events.
 - •Compares to a few tens for B-factory at their design lumi.
 - •BTeV: Learning how to do Dalitz plot fits with resolution effects, efficiency and backgrounds.

- •B_s \rightarrow J/ $\psi\eta^{(\prime)}$: $\sigma(sin2\beta_s) = \pm 0.03 (BTeV)$ CDF looking at this too.
- •BTeV: a lot of charm will pass the b trigger. High precision measurments, or limits, on x, y, r_{DCs}, rare decays.
- •CDF and D0 have not evaluated how much charm they get.

B Physics at the Tevatron Summary

- •During Run I B physics was an afterthought but it still produced a wealth of B physics, competitive in many places with CLEO, LEP, SLD.
- •Run II detectors have B physics designed in.
- •Great things are expected. Will be competitive with the B-factories in many areas and will exceed them in others.
- •BTeV will come online near the end of Run II and will carry the B physics program to the end of the decade. It will also have a signficant charm program.